2.0 Project Analysis

2.1 INSTITUTIONAL CONTEXT

EWU’s Mission
The mission of Eastern Washington University is to prepare broadly educated, technologically proficient, and highly productive citizens to attain meaningful careers, to enjoy enriched lives, and to make contributions to a culturally diverse society. Eastern Washington University will achieve its mission by providing:

- an excellent student-centered learning environment;
- professionally accomplished faculty who are strongly committed to student learning;
- high quality, integrated, interdependent programs that build upon the region’s assets and offer a broad range of choices as appropriate to the needs of the university’s students and the region; and
- exceptional student support services, resources, and facilities.

The proposed Science I project will very directly contribute to preparation of technologically proficient citizens. It will be a vital part of an excellent student-centered learning environment and exceptional resources and facilities. It will lend support to providing high quality, integrated, interdependent programs.

EWU’s Strategic Plan
Eastern Washington University’s current Strategic Plan was issued June 13, 2008 in association with the operating budget request for the 2009-2011 Biennium. In order to measure how the proposed Science I would meet Eastern Washington University’s Strategic Plan, relevant institutional goals, objectives, performance measures and strategies from the Plan are listed below with a description of how the Science I project could support them.

<table>
<thead>
<tr>
<th>EWU Strategic Plan Goals, Objectives, Performance Measures and Strategies</th>
<th>Science I’s Role in Supporting EWU Strategic Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal I: A rigorous and engaged student learning experience</td>
<td></td>
</tr>
<tr>
<td>Objective 1: Foster more engaged student learning by providing opportunities for student interaction, immersion and integration. Strategy: Expand use of classroom technologies that support more active learning. Strategy: Support higher levels of student engagement in research.</td>
<td>Science I would provide increased research laboratory space and will be equipped with up-to-date information technology and audio-video capabilities, allowing opportunities for higher levels of student engagement in research and active learning. Spaces that foster student interaction, which are lacking in the existing Science Building, would be included in the Science I program.</td>
</tr>
<tr>
<td>Objective 2: Integrate general education with career preparation. Strategy: Provide support to faculty to support integration of diversity, service learning and student research into new general education curriculum. Strategy: Expand the first year experience course for freshman.</td>
<td>Increased research space would allow faculty to more readily support integration of student research into the chemistry and physics curricula. Increased introductory teaching laboratory spaces would allow for greater freshman access to science courses.</td>
</tr>
<tr>
<td>Objective 4: Respond to need for graduates in “high-demand” fields. Performance Measure: Increased numbers of bachelor degrees awarded in engineering, health or life sciences, mathematics, and secondary teacher education in mathematics, life sciences or Spanish.</td>
<td>By increasing the space devoted to teaching labs and research labs, a Science I would allow greater capacity to provide science training for students pursuing engineering and science education bachelor degrees.</td>
</tr>
<tr>
<td>Objective 5: Provide an environment supportive of learning and teaching excellence. Performance Measure: Increase the number of classrooms that have been technology-enhanced. Strategy: Complete implementation of campus-wide wireless capability.</td>
<td>Science I should be equipped with building-wide wireless capability. Each teaching laboratory should have up-to-date information technology and audio-video systems.</td>
</tr>
</tbody>
</table>
Priorities of Government
The Office of Financial Management’s 2009-11 Priorities of Government (POG) lists “Deliver increased value from postsecondary learning” as one of ten categories of desired statewide results. Within that category, the top two priorities for Eastern Washington University are identified as follows:

Instruction Eastern Washington University provides quality undergraduate and graduate students with the knowledge they need to acquire a degree, prepare for a career, and continue learning after they leave the university.

Research Public and private organizations may purchase or sponsor research, instruction, or consultative services from Eastern Washington University. Federal, state, local, and privately-funded research provides opportunities for faculty and students to maintain and enhance their scholarship and to provide knowledge in areas of concern to the citizens of the state.

The fundamental purpose of EWU Science I will be provision of quality teaching and research laboratories that serve the instructional and research needs of students and faculty. As such, the Science I project will very directly address the top Priorities of Government.

Peer Institutions in the State
Eastern Washington University’s peer institutions in the State of Washington are Western Washington University and Central Washington University. As one benchmark for determining appropriate facility provisions for sciences, an examination of chemistry buildings at the three universities was undertaken. That examination reveals that EWU lags significantly in chemistry facilities, both in quality and in size.

Western Washington University – Over three biennia in the mid-1990s, WWU constructed three new science buildings that are dedicated to chemistry, biology and science education, moving these sciences out of the outdated and overtaxed Haggard Hall. The new Chemistry Building, completed in 1993, is 82,014 gross square feet (after current addition).
Central Washington University – In 2000 CWU completed construction on a 155,307 gross square-foot Science Building dedicated to biology and chemistry, moving these sciences out of the outdated and overtaxed Dean Hall.

Eastern Washington University – Chemistry and physics currently share Science Building with biology and geology. Science Building was constructed in 1962 as a two story 109,000 gross square-foot structure. A 39,200 gross square-foot addition, completed in 1989 and primarily utilized by biology, increased the total building area to 148,149 gross square feet. Additional building renovations were undertaken between 1990 and 1994. Chemistry occupies twenty-four percent (24%) of the Science Building area, equivalent to 34,771 gross square feet. Physics occupies fourteen percent (14%) of the Science Building area, equivalent to 20,770 gross square feet.

The following table summarizes the chemistry facilities at peer institutions:

<table>
<thead>
<tr>
<th>Institution</th>
<th>Year Chemistry Facility was Constructed*</th>
<th>2008-09 Avg. Student Enrollment (FTE)**</th>
<th>Gross Area of Chemistry Facility*</th>
<th>Chemistry Area per Enrolled Student FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWU</td>
<td>1993</td>
<td>12,408</td>
<td>82,014 GSF</td>
<td>6.6 GSF</td>
</tr>
<tr>
<td>CWU</td>
<td>2000</td>
<td>9,082</td>
<td>55,910 GSF</td>
<td>6.2 GSF</td>
</tr>
<tr>
<td>EWU</td>
<td>1962 with 1988 addition</td>
<td>9,287</td>
<td>34,771 GSF</td>
<td>3.7 GSF</td>
</tr>
</tbody>
</table>

* Source is OFM State Facility Inventory System 2009. Note that CWU chemistry is assumed to occupy 36% of the CWU biology/chemistry building.

** Source is OFM Final 2008-09 Budget Driver Report; numbers are State-funded full-time equivalent students

This table reveals that chemistry at WWU is housed in 78% more space per student than at EWU. At CWU chemistry is house in 68% more space per student than at EWU. The table provides one useful benchmark in assessing the appropriate size for a chemistry building.
2.2 OPERATIONAL NEEDS

Increasing Demand for Sciences
EWU expects that over the next ten years, its student population will grow by approximately twenty percent. Increased regional demand for healthcare and growing opportunities for undergraduate and graduate healthcare education at Riverpoint Campus in Spokane will mean that a disproportionately large share of the additional students will be seeking healthcare-related degrees. This will translate to a substantial increase in the demand for basic science courses that serve as prerequisites to healthcare degrees, including chemistry and physics. It is also expected that in proportion to the increase in student population more students will choose to major in these sciences.

Additionally, a new program in mechanical engineering will begin in fall quarter of 2010. Mechanical engineering students will have mandatory physics prerequisites that will increase the demand on the physics department.

Capacity of Current Science Facilities
The existing Science Building is the only facility at EWU that contains laboratories capable of accommodating chemistry and physics teaching and research. Lower division chemistry courses are currently running at or beyond the capacity of the available teaching laboratories in Science Building, so additional general chemistry laboratories are needed. The current facility lacks both an inorganic/physical chemistry teaching lab and an analytical chemistry teaching lab. Additionally, the very limited research laboratory space in the existing Science Building is not capable of serving the research needs of additional science majors. Besides the insufficiency of laboratories, the most pressing need is for additional lab support space, including prep space for teaching labs, space for scientific instruments, and specialized storage space for science equipment and reagents used in teaching and research.

Without an increase in chemistry and physics teaching labs, research labs, and lab support space, EWU will not be able to meet the increased demand for basic sciences. Lack of space to accommodate growth will equate to inadequate science training to serve the rapidly growing regional focus on health science programs in Spokane and the new mechanical engineering program.

Science Building Condition
In addition to the capacity issues mentioned above, the existing Science Building has serious deficiencies that are at odds with the university’s mission to provide an excellent student-centered learning environment and exceptional resources and facilities. Deficiencies in the existing Science Building include:

- **Health and safety issues** – Health and safety problems include unserviceable and insufficient number of fume hoods, chemical storage areas without proper ventilation and spill containment, an inability to isolate gas burners in labs, lack of adequate distribution for inert gases, and emergency showers without tempered water.

- **Accessibility violations** – A comprehensive, campus-wide survey identified over 400 separate accessibility deficiencies in the existing Science Building. The majority of deficiencies are related to inaccessible laboratory benches and sinks, doors and restrooms. The current planetarium’s location on the second level of the existing Science Building is awkward for access by visitors and problematic for wheelchair users.

- **Problematic HVAC** – Science buildings, particularly those that include chemistry laboratories, typically have extraordinary ventilation requirements associated with laboratory fume hoods and other devices that are used to safeguard students, staff and faculty from potential harmful exposure associated with science materials. The existing Science Building contains inefficient and noisy heating, ventilating and air conditioning (HVAC) systems that cannot effectively maintain the pressure differentials and air change rates demanded by the scientific activities that occur
in the building. In some labs, noise levels from the HVAC system exceed acceptable
decibel levels for instruction. Insufficient floor-to-floor height and impenetrable
beams in ceiling spaces would severely limit the possibility of adding ductwork in a
renovation of the building. (Note: previous renovations have added large ducts both
under and over the building. As a result, the current rooftop features a forest of
ducts and fans.)

- **Technology deficiencies** – The existing Science Building is ill-suited for today’s
 educational technology. Wireless internet connectivity is lacking as are suitable
 audio-video and data facilities. The chemistry department lacks space for its
 informatics servers.

- **Lack of student spaces** – The existing Science Building completely lacks the
 non-classroom spaces that enable the “excellent student-centered learning
 environment” envisioned in the university’s mission. Spaces for informal student
 gathering, collaboration and study are non-existent. Open computer labs are
 sparingly provided. Lounges are unheard of. Even the corridors of Science Building,
 which might otherwise provide nooks and crannies for informal student use, have
 been retrofitted with large duct shafts that inhibit this opportunity.

- **Building condition** – The 2009 State Facility Inventory System rates the existing
 Science Building’s condition as “Needs Improvement: Limited Functionality”. The
 current physical condition of the existing building is well below that of EWU’s peer
 institutions and its age is more than double that of peer institutions. This puts EWU
 in the position of being less competitive in the current educational market.

- **Cost of maintenance and repairs** – Exclusive of custodial and grounds services,
 the maintenance and repair costs for the existing Science Building average over
 $366,000 per year. In addition, almost $400,000 is spent from the capital minor
 works accounts for facility preservation, health and safety code compliance and
 backlog reduction. The combined cost equates to $4.92 per square foot per year.
 This is nearly three times the cost per square foot of maintenance and repairs for
 the 5-year old EWU Computing & Engineering Building, which requires $1.68 per
 square foot per year. The cumulative effect on the annual operating budget may
 soon become unaffordable, resulting in increased deferral of critical maintenance
 and repair, which will lead to further deterioration of the building and its ability to
 support its science education functions.

- **Cost of energy** – The existing Science Building is the largest energy user on the EWU
 campus. Science Building accounts for 13.7% of the total campus energy use, even
 though it is only 5.4% of the total campus square footage. While it is normal for
 science buildings to have a disproportionately large use of campus energy, a new
 energy-conserving Science I, coupled with reuse of the existing Science Building for
 less energy intensive purposes, would have a very positive impact on campus energy
costs.
2.3 ALTERNATIVES EXPLORED

Alternative I: No Action
The consequences of taking no action may have an extremely negative impact on the university and the region. EWU would not be able to address increased demand for science courses due to growing enrollment. Student access to and success in undergraduate science programs could not be ensured. And the university would not be able to provide the science prerequisites associated with the growing regional focus on healthcare education and enterprise.

Additionally, the current Science Building would continue to pose health and safety issues, including code violations. It would continue to have significant deficiencies in technology, HVAC, student spaces and general quality. The current Science Building would also continue to experience high maintenance and repair costs, which if deferred will result in a facility that is not capable of supporting even the current student load.

Alternative II: Renovation of Existing Science Building
The initial idea for addressing the deficiencies of the existing Science Building was a major renovation of the existing building. This alternative fell short of meeting the need in three major ways:

- There are no facilities available for temporary relocation of chemistry and physics laboratories during the renovation of the existing building.
- The existing structure is not compatible with the needs of science education. The ventilation demands and laboratory support systems in a chemistry facility require above-average floor-to-floor heights that allow clear ceiling space for large ductwork and laboratory plumbing and electrical systems. The existing Science Building is not adequate in this regard and cannot be made so without complete demolition and reconstruction of the superstructure.
- The existing building does not allow for the necessary growth of chemistry and physics facilities to serve future needs.

Alternative III: New Building on the Existing Campus
Satisfaction of the program requirements can readily be achieved through construction of a new building on the campus in Cheney that will serve as a partial replacement for the existing Science Building. The new structure can be designed to provide desired health, safety and functionality without compromise. The current site of the Robert Reid Lab School, located on the EWU campus, is available since the school is no longer in use and is a candidate for demolition. A new three-story building on this site will help to consolidate the science commons that is envisioned in the master plan – that commons would be surrounded by the existing Science Building, the new Science I, the Computing & Engineering Building, and the JFK Library. The building would be a student centered environment that would provide a high quality science teaching environment that is responsive to the needs of science education.
During the Science I predesign study, a number of new building options were examined to determine the optimal approach to meeting the programmatic needs of the science departments at a reasonable project cost. These options were studied as cost-loaded variations on the program. Options considered (with preliminary project costs in parentheses) included:

1) Chemistry-Biology Replacement ($114M): This scheme encompassed all program requirements of the chemistry and biology departments. It also included three classrooms, a planetarium that is part of the physics program, and space for the College of Science, Health & Engineering dean’s offices.

2) Partial Chemistry-Biology Replacement ($74M): This option located the majority of biology and chemistry spaces in a new building. It selectively left a number of functions in the existing Science Building, including four biology/chemistry teaching labs, two specialized biology research labs, some storage space for the departments, and biology’s radioisotope lab, vivarium, and greenhouse. Since significant elements of both programs would remain in the existing Science Building, this option created a physical division in both departments that was deemed to be impractical.

3) Biology Only Replacement ($73M): This option located the full biology program in a new building along with two large classrooms.

4) Chemistry-Physics Replacement ($72M): This scheme encompassed all aspects of the current science program with respect to chemistry and physics. It also included three classrooms and space for the College of Science, Health & Engineering dean’s offices.

The Chemistry-Biology Replacement has a larger project budget than was deemed feasible. The Partial Chemistry-Biology Replacement involves a significant compromise to the program for those departments. The Biology Only Replacement doesn’t address the department (Chemistry) with the greatest need for safety upgrades and growth. The Chemistry-Physics Replacement was determined to be the best option to satisfy the greatest needs.

Alternative IV: Addition to Existing Science Building

This alternative is similar to Alternative III except that it involves constructing a new building addition immediately adjacent to the existing Science Building. In order to avoid the deficiencies of the existing Science Building, the program for this building would be virtually the same as Alternative III.

This idea was explored at length during the predesign study; however, it was determined that no adequate site was available for such an addition without significant negative impact to the campus. The best location for an adjacent addition is the site to the north of Science Building. A four-story Science I addition, with a footprint of approximately 25,700 square feet, would impinge on the future expansion of Pence Union Building that is currently in early planning. It would also require the loss of a portion of the existing parking/transit area that includes the primary bus terminal on campus, which serves over 150 buses each week. Finally, the building addition would sit squarely on the existing campus “mall” that is the most significant pedestrian pathway on campus and a major orienting feature of the central campus plan.
2.4 SELECTED ALTERNATIVE

Preferred Alternative
EWU proposes that Alternate III – a new building on the existing campus - is the best alternative to solve the most pressing science facility deficiencies and meet the future needs.

Scope of Preferred Alternative
The preferred alternative would construct a new 102,573 gross square foot facility on the EWU campus at Cheney, Washington that will house teaching laboratories, research laboratories, lab support facilities, student study areas, and faculty offices for the chemistry and physics departments; three classrooms with science demonstration capability; and offices for the dean of the College of Science, Health & Engineering.

Anticipated Results
The preferred alternative will allow EWU to meet the increased demand for chemistry and physics courses due to growing enrollment and the growing regional focus on healthcare education and enterprise. It will provide the two sciences with significant improvements in laboratory quality, technology, HVAC, and student spaces. By locating chemistry and physics departments in an energy-efficient structure, Science I is expected to experience significant savings in energy costs relative to the existing Science Building.

Science I will also allow the repurposing of the portion of the existing Science Building that will be vacated by chemistry and physics (as a separate project). Moving chemistry and physics to a new building will relieve the existing Science Building of some of its most egregious health and safety issues. With reduced demand on mechanical and electrical systems, the current Science Building should require lower maintenance and repair costs and substantially lower energy costs.

2.5 IDENTIFICATION OF ISSUES

Reduction of Greenhouse Gas Emissions
EWU is subject to two mandates that affect its greenhouse gas emissions. The first is state law RCW 70.235 and the second is the American College & University President’s Climate Commitment.

Revised Code of Washington RCW 70.235 “Limiting Greenhouse Gas Emissions” requires all state agencies to reduce greenhouse gas emissions as follows:

- By July 1, 2020, to 15% below 2005 levels
- By 2035, To 35% Below 2005 levels
- By 2050, to the greater of 57.5% below 2005 levels or 70% below state government emissions that year

EWU is signatory to American College & University President’s Climate Commitment (ACUPCC), which provides a framework and support for universities to implement comprehensive plans in pursuit of climate neutrality. The Commitment recognizes the unique responsibility that institutions of higher education have as role models for their communities and in educating the people who will develop the social, economic and technological solutions to reverse global warming and help create a thriving, civil and sustainable society. As part of the Commitment, ACUPCC institutions have agreed to take steps to reduce greenhouse gas emissions.

A key part of EWU’s strategy toward reducing greenhouse gas emissions is the reduction in the use of fossil fuels for building energy and power. The inclusion of energy-conserving HVAC and electrical systems in the new Science I is the best way for the project to assist in the goal of reducing overall campus use of fossil fuels. Since science buildings are typically the greatest consumers of energy on a campus, discovering ways to make the Science I building a low energy consumer will be especially significant.
Geothermal Potential
Perhaps one of the most exciting issues for this project is the opportunity for EWU to explore the use of underground aquifers below the campus as a heat source for the building. EWU currently utilizes well water for domestic use and landscape irrigation. A new replacement well is coming online and it has been discovered that water from this well has elevated temperatures. It may be feasible to utilize this resource to serve the heating needs of a new Science I. Since heating will be the primary energy use by a new building, this raises the possibility of profound energy savings over the life of the new building.

Systems and Services
The new facility will need to be serviced by campus systems and services including:
- Student technology access;
- Classroom and laboratory technology systems;
- Campus facilities scheduling;
- Campus utility systems;
- Building and grounds maintenance and repair; and
- Technical support and organizational systems.

Future Science II Project
The EWU master plan indicates the possibility of a Science II building on the site immediately to the south of Science I. Science II is thought to house biology and geology, in order to consolidate the science disciplines at a single location. The design of Science I should take into account the possibility of making a physical connection with Science II, both to encourage collaboration between the science disciplines and to allow for the classrooms in Science I to be utilized by the disciplines in Science II.

2.6 PRIOR PLANNING AND HISTORY
In August of 2008, Eastern Washington University submitted a Replacement Capital Project Request to the state seeking predesign funding for a Biology-Chemistry Science Center. Pursuant to that request, predesign funding was appropriated for the 2009-2011 biennium. This report is a result of that action. Through the detailed programming and cost analysis of the predesign study, it was determined that a chemistry/biology facility would be too ambitious. As a result, the program for the project has evolved from chemistry/biology to chemistry/physics.

2.7 STAKEHOLDERS
Affected groups include the Eastern Washington University students, faculty and staff; the citizens of Washington State; and state, regional and national agencies and organizations. The EWU stakeholders not only include the chemistry and physics departments within the university, but also the larger campus community and the large number of students that will be accommodated by the proposed building.

Committees established by EWU for the purpose of providing guidance and direction for the project included:
- **Executive Committee** – University president, provost, chief information officer, vice president of business and finance, associate vice president of facilities & planning, and the dean of the College of Science, Health & Engineering.
- **Project Delivery Team** – Dean of the College of Science, Health & Engineering, associate vice president of facilities and planning, director of construction & planning, senior project manager, and contract administration specialist.
- **Building Team** – Dean of the College of Science, Health & Engineering, chemistry department representatives, physics department representatives, construction & planning representatives.
2.8 PROJECT DESCRIPTION

Project Data
Agency Name: Eastern Washington University
Agency Code: 370
Project Number: 30000001
Project Title: Science I
Agency Contact: K.C. Traver, Director of Construction & Planning
Eastern Washington University
101 Rozell
Cheney, Washington 99004-2446
(509) 359-4333 (phone)
(509) 359-4224 (fax)
ktraver@ewu.edu

Building Data
Building Size: 102,573 GSF
Occupants: Approximately 1,500 (per 2009 IBC)
Uses: Chemistry and physics departments:
- Teaching laboratories
- Research laboratories
- Lab support spaces
- Faculty and staff offices
- Student computer and study spaces
- Planetarium
College of Science, Health & Engineering dean’s office
Classrooms with science demonstration capability

2.9 IMPLEMENTATION AND MANAGEMENT

Management Organization
The University’s Construction and Planning office will manage the design and construction of this project. The Associate Vice President for Facilities and Planning is responsible for overall organization management. Construction and Planning provides oversight of programming; pre-design; cost estimating; design and construction services for building alterations, new construction, and grounds improvements for the Cheney campus.

Project managers organize and administer the work of outside design consultants and public works contractors. They follow projects all the way through construction and work closely with clients, project architects, designers and consultants to ensure projects are on time and within budget.

The following individuals in the Construction and Planning office will oversee the Science I project:
- Shawn King Associate Vice President
- K.C. Traver Director
- Troy Bester Senior Project Manager
- Tomson Spink Contract Administration Specialist

The cost for the University’s management of the design and construction is included in the Project Budget Analysis section of this report.
Method of Delivery

Eastern Washington University proposes to use the General Contractor/Construction Manager (GC/CM) method, as authorized by the State Legislature in Title 39 RCW, to accomplish this project in the most cost-effective manner.

Including a General Contractor/Construction Manager on the project team during the design phase will help the project team to make the most cost-effective design decisions. The GC/CM will provide value engineering, constructability, cost estimating, and schedule development assistance during the design phase to minimize the potential for cost or schedule overrun. In the GC/CM process the university’s exposure to rising costs and construction change orders should be mitigated by the early involvement of the contractor. Utilizing GC/CM delivery allows the university to have greater control over the overall quality of the project due to the increased interaction of the contractor with the team during the design process.

The inclusion in the project of an ambitious use of ground water to provide economical lifetime heating to the new building introduces a complexity to the project, both in construction and design, which increases the desirability of having a GC/CM as an early collaborator in the project planning. The need for specialized subcontractors and the probable need to do deep well drilling as a separate bid package, coupled with the inherent complexity of a wet laboratory building, make the GC/CM option the best choice for this project.

2.10 SCHEDULE

A summary schedule is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Predesign</td>
<td>9/21</td>
<td>7/25</td>
<td>12/16</td>
<td>1/10</td>
<td>11/18</td>
<td>12/19</td>
<td>6/8</td>
</tr>
<tr>
<td>2</td>
<td>Schematic Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GC/CM Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SD Review/Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Design Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DD Review/Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Construction Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CD Review/Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Building Permit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GC/CM Procurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Construction Mid-Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Construction Closeout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Installation of Furniture & Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Move-In by Staff & Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Occupancy for Classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>